Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

閉める
閉める
  • Netskopeが選ばれる理由 シェブロン

    ネットワークとセキュリティの連携方法を変える。

  • 導入企業 シェブロン

    Netskopeは、フォーチュン100社の30社以上を含む、世界中で3,400社以上の顧客にサービスを提供しています。

  • パートナー シェブロン

    私たちはセキュリティリーダーと提携して、クラウドへの旅を保護します。

SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。

ネットスコープが2024年Gartner®社のシングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご覧ください。

レポートを読む
顧客ビジョナリースポットライト

革新的な顧客が Netskope One プラットフォームを通じて、今日の変化するネットワークとセキュリティの状況をどのようにうまく乗り越えているかをご覧ください。

電子書籍を入手する
顧客ビジョナリースポットライト
Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。

Netskope パートナーについて学ぶ
色々な若い専門家が集う笑顔のグループ
明日に向けたネットワーク

サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。

ホワイトペーパーはこちら
明日に向けたネットワーク
Netskope Cloud Exchange

Netskope Cloud Exchange (CE) は、セキュリティポスチャに対する投資を活用するための強力な統合ツールを提供します。

Cloud Exchangeについて学ぶ
Aerial view of a city
  • Security Service Edge(SSE) シェブロン

    高度なクラウド対応の脅威から保護し、あらゆるベクトルにわたってデータを保護

  • SD-WAN シェブロン

    すべてのリモートユーザー、デバイス、サイト、クラウドへ安全で高性能なアクセスを提供

  • Secure Access Service Edge シェブロン

    Netskope One SASE は、クラウドネイティブで完全に統合された単一ベンダーの SASE ソリューションを提供します。

未来のプラットフォームはNetskopeです

Security Service Edge (SSE)、 Cloud Access Security ブローカ (CASB)、 Cloud Firewall、 Next Generation Secure Web Gateway (SWG)、および Private Access for ZTNA a 13 にネイティブに組み込まれており、 Secure Access Service Edge (SASE) アーキテクチャへの旅ですべてのビジネスを支援します。

製品概要はこちら
Netskopeの動画
Next Gen SASE Branch はハイブリッドである:接続、保護、自動化

Netskope Next Gen SASE Branchは、コンテキストアウェアSASEファブリック、ゼロトラストハイブリッドセキュリティ、 SkopeAI-Powered Cloud Orchestrator を統合クラウド製品に統合し、ボーダレスエンタープライズ向けに完全に最新化されたブランチエクスペリエンスを実現します。

Next Gen SASE Branchの詳細はこちら
オープンスペースオフィスの様子
ダミーのためのSASEアーキテクチャ

SASE設計について網羅した電子書籍を無償でダウンロード

電子書籍を入手する
ダミーのためのSASEアーキテクチャ eBook
最小の遅延と高い信頼性を備えた、市場をリードするクラウドセキュリティサービスに移行します。

NewEdgeの詳細
山腹のスイッチバックを通るライトアップされた高速道路
アプリケーションのアクセス制御、リアルタイムのユーザーコーチング、クラス最高のデータ保護により、生成型AIアプリケーションを安全に使用できるようにします。

生成AIの使用を保護する方法を学ぶ
ChatGPTと生成AIを安全に有効にする
SSEおよびSASE展開のためのゼロトラストソリューション

ゼロトラストについて学ぶ
大海原を走るボート
NetskopeがFedRAMPの高認証を達成

政府機関の変革を加速するには、Netskope GovCloud を選択してください。

Netskope GovCloud について学ぶ
Netskope GovCloud
  • リソース シェブロン

    クラウドへ安全に移行する上でNetskopeがどのように役立つかについての詳細は、以下をご覧ください。

  • ブログ シェブロン

    Netskopeがセキュアアクセスサービスエッジ(SASE)を通じてセキュリティとネットワーキングの変革を実現する方法をご覧ください

  • イベント&ワークショップ シェブロン

    最新のセキュリティトレンドを先取りし、仲間とつながりましょう。

  • 定義されたセキュリティ シェブロン

    サイバーセキュリティ百科事典、知っておくべきすべてのこと

「セキュリティビジョナリー」ポッドキャスト

A Cyber & Physical Security Playbook
Emily Wearmouth と Ben Morris が、サイバーセキュリティと物理的なセキュリティが出会う国際的なスポーツ イベントを保護するという課題を探ります。

ポッドキャストを再生する Browse all podcasts
A Cyber & Physical Security Playbook、World RugbyのBen Morris氏による共著
最新のブログ

Netskopeがセキュアアクセスサービスエッジ(SASE)機能を通じてゼロトラストとSASEの旅をどのように実現できるかをお読みください。

ブログを読む
日の出と曇り空
SASE Week 2024 オンデマンド

SASEとゼロトラストの最新の進歩をナビゲートする方法を学び、これらのフレームワークがサイバーセキュリティとインフラストラクチャの課題に対処するためにどのように適応しているかを探ります

セッションの詳細
SASE Week 2024
SASEとは

クラウド優位の今日のビジネスモデルにおいて、ネットワークとセキュリティツールの今後の融合について学びます。

SASEについて学ぶ
  • 会社概要 シェブロン

    クラウド、データ、ネットワークセキュリティの課題に対して一歩先を行くサポートを提供

  • 採用情報 シェブロン

    Netskopeの3,000 +素晴らしいチームメンバーに参加して、業界をリードするクラウドネイティブセキュリティプラットフォームを構築してください。

  • カスタマーソリューション シェブロン

    お客様の成功のために、Netskopeはあらゆるステップを支援いたします。

  • トレーニングと認定 シェブロン

    Netskopeのトレーニングで、クラウドセキュリティのスキルを学ぶ

データセキュリティによる持続可能性のサポート

Netskope は、持続可能性における民間企業の役割についての認識を高めることを目的としたイニシアチブである「ビジョン2045」に参加できることを誇りに思っています。

詳しくはこちら
データセキュリティによる持続可能性のサポート
クラウドセキュリティの未来を形作る

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

チームに参加する
Netskopeで働く
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

カスタマーソリューションに移動
Netskopeプロフェッショナルサービス
Netskopeトレーニングで、デジタルトランスフォーメーションの旅を保護し、クラウド、ウェブ、プライベートアプリケーションを最大限に活用してください。

トレーニングと認定資格について学ぶ
働く若い専門家のグループ

GCP OAuth Token Hijacking in Google Cloud – Part 1

Aug 07 2020

If an attacker compromises a Google Cloud Platform (GCP) user’s device, he can easily steal and abuse cached credentials, even if MFA is enabled.

In this blog post, we will demonstrate an attack in real Google Cloud environments, involving:

  • Hijacking cached OAuth tokens stored on a GCP administrator’s client machine
  • Reusing existing gcloud CLI sessions to gain access to multiple GCP environments,
  • Showing that MFA does not apply to OAuth token refreshes for cached credentials (only the initial login)
  • Discussing broader implications for service account keys

We will use realistically configured Google Cloud environments, as well as client machines where the initial compromise would happen. To demonstrate the attack, as well as defensive measures, we will alternate among the Google Cloud and G Suite Admin Consoles, the Google Cloud SDK command-line tools (gcloud and gsutil), and Stackdriver log events to demonstrate commands in the attack as well as administrative tasks for defensive measures.

This blog is from the attacker’s viewpoint, and later, in OAuth Token Hijacking in Google Cloud (GCP), Part 2, we will discuss what users can do to detect with Stackdriver Logging or G Suite Auditing Logs, remediate compromised tokens/access, and prevent such an attack in the first place.

OAuth

All authentication in Google Cloud uses the OAuth protocol underneath, regardless of whether you log on interactively via the browser or programmatically access GCP via the SDK. Here is a simplified, high-level view of the OAuth flow for programmatic access to GCP from an external GCP administrator’s machine (e.g. laptop):

  1. Access is requested (OAuth access token request). A GCP user typically sees this step when initially authenticating with the CLI, and a browser is launched to authenticate you, and you approve access. Part of requesting a token is to specify what scopes of permissions you are requesting–this is the prompt asking for your approval for access in the browser that is launched.
  1. An OAuth session access token and refresh token are created and returned. The session tokens expire after an hour and can be refreshed/regenerated by using the refresh token. These session and refresh tokens are cached.
  1. The access token is used for subsequent authentication for all API calls.

Token Hijacking for CLI (Bulk Credential Copy)

If we gain initial access to a laptop of a GCP administrator with normal user privileges, we can immediately access the user’s current gcloud sessions that include the cached OAuth access tokens:

The account, [email protected], has MFA enabled with a hardware security key.  Let’s see what happens when we switch to that account.

We’ve switched accounts without trouble, but let’s see if the account works i.e. the credentials (tokens) are up-to-date and determine what we can access.

So, we were able to switch to the production account prod-mfa-hw.com and access a production bucket sensitive-bucket using the cached gcloud credentials (note: gsutil and gcloud share cached credentials). There was no prompt to reauthenticate when switching to the production account. In addition, MFA is enabled on this production account, but it has no effect on reauthentication.

The actual cached credentials are OAuth access and refresh tokens generated during the initial authentication (gcloud auth login). On Linux/macos, they are stored in ~/.config/gcloud, while on Windows they are stored in C:\Users\<username>\AppData\Roaming\gcloud.

The .db files are sqlite database files with a legacy directory containing text files per account. We’ll look at these files in more detail in the next scenario. 

For now, let’s see how easy it is to copy these credentials off-machine and use them. Let’s just tar up the files, copy to another machine, and see what happens.

Let’s switch to the other machine my-attack-host-12345.com and check if the copied credentials work with gcloud.

It worked. So, all context/credentials have been transferred over to another machine by simply copying over all files in ~/.config/gcloud. Bucket access via gsutil also works on the attacker’s machine. The cached OAuth tokens are still valid. No reauthentication or MFA prompt is required from the new host.

Token Hijacking for API Calls

We just showed how we can easily copy the cached credentials en masse and access the user’s GCP environments. We can also pull out the OAuth tokens from the cache and use them directly to execute API calls instead of the CLI.

Let’s look back at the sqlite database files in ~/.config/gcloud. The file, access_tokens.db, contains the current OAuth access token, while credentials.db contains the refresh token, the OAuth client id/secret, scopes, and other information.

As you can see, the files are unencrypted and are easy to query. OAuth access tokens normally expire in 3600 seconds, after which, the refresh token must be used to obtain another access token. The credential.id_token.exp field indicates when the initial OAuth token was set to expire:

Since the default token duration is one hour, we know that the production environment prod-mfa-hw.com was first accessed from this machine back on June 17 at 09:12:03am PDT. And more than a month later, these cached credentials (OAuth refresh and access tokens) have not expired, are still valid, and can be used by an attacker. In other words, the time window for accessing the production environment from this host has been open for many weeks/months.

The refresh token will continue to be valid except under certain conditions (e.g. expiration is set, tokens explicitly revoked, or max limits hit) — these scenarios will be discussed later in Part 2 of this blog series.

So, how do we make use of these OAuth tokens directly?

We take the client id, secret, and refresh token from credentials.db as shown in the above query, and then generate a new, valid access token with an API call (part of the OAuth flow):

The response from the API call is a new OAuth access token, which can be used in any API call. Let’s execute a bucket listing call on the production bucket.

Other Token Hijacking Risk Areas

Service Accounts

Since OAuth is used for all Google Cloud authentication, when you add a service account key file locally during gcloud account configuration, gcloud will obtain OAuth tokens and store the tokens in the local access_tokens.db and credentials.db cache.

On a client machine outside of the GCP environment, stealing OAuth tokens for service accounts may not seem useful since the service account key file is likely stored under the user’s account anyways , and is more general and valuable for an attacker to compromise–the key file allows permanent access/reauthentication as it contains the private key secret.

However, there is an advantage to stealing the OAuth tokens generated for service accounts. Depending upon the remediation step taken by the victim, service account OAuth tokens may not be revoked, thereby granting up to an additional hour of access/persistence for the attacker: 

  1. Deleting the API keys generated under the service account, will not revoke current OAuth session tokens, and the attacker can still execute the CLI/API calls until the token expires (up to one hour).
  2. Disabling the service account works and causes subsequent API calls using the OAuth token to fail. However, the token is not actually revoked, it still exists, so if the service account is re-enabled, the last OAuth access token will work again.
  3. Deleting the service account revokes the OAuth access token.

These remediation steps are discussed in more detail in Part 2.

Compute Instances

If an attacker gains shell access to compute instances and if the user has installed gcloud (Google Cloud SDK), then all of the above regarding token compromise applies. 
Service accounts and their associated OAuth tokens on compute instances are another common attack vector. Compute instances can run as a service account identity, and in order to make it easier and more secure for users to run their compute application code and perform CLI tasks as that service account, a metadata service is provided that fetches a valid OAuth access token.

This is useful as the service account credentials (a key file) are not normally stored on a compute instance–the metadata service was created to avoid storing key files locally. But as we can see, once access is gained to the compute instance, the metadata service is easily queried to obtain a valid OAuth token. The expiration time for the access token is still a max of one hour. After the access token expires, no refresh token is needed to obtain a new access token, one just requires the metadata service. The metadata service is run locally on the compute instance and must be queried locally.

Cloud Shell

A special compute instance use case is the Google Cloud shell, which provides access to a Google-managed compute environment that includes the Google Cloud SDK pre-installed. Google Cloud shell has recently had root compromises as well as backdoor vulnerabilities. Once access is obtained to a Cloud shell and the underlying compute instance, both the ~/.config/glcoud credential cache and the metadata service can be exploited to hijack OAuth tokens.

Conclusion

In this post, we discussed 3 scenarios for hijacking OAuth tokens directly for subsequent use in the gcloud/gsutil CLI or in REST API calls:

  • Bulk copy of the gcloud sqlite database files used by the CLIs
  • Reuse of the OAuth tokens stored in the sqlite database, for use in API calls
  • Stealing of the OAuth tokens returned from a compute instance’s metadata service for use in API calls

The scenarios rely upon several design or configuration aspects of OAuth tokens:

Accessibility

  • Open sqlite database holding cached credentials/tokens
  • OAuth tokens are cached and unencrypted, allowing easy access once the client endpoint has been exploited.
  • Ease of copying unencrypted cached tokens to another host for exploitation

Persistence

  • Tokens can have long or no expiration, allowing potentially long time windows for compromise.
  • The attacker can easily refresh tokens, allowing persistence.
  • Token refresh does not require MFA making it easy to maintain persistence, creating a false sense of security when MFA is enabled.

In our next blog post, OAuth Token Hijacking in Google Cloud (GCP), Part 2, we’ll look at the challenges in detecting, remediating, and preventing abuse from hijacked OAuth tokens.

author image
Jenko Hwong
Jenko has 15+ years of experience in research, product mgmt., and engineering in cloud security, routers/appliances, threat intel, vulnerability scanning and compliance.
Jenko has 15+ years of experience in research, product mgmt., and engineering in cloud security, routers/appliances, threat intel, vulnerability scanning and compliance.

Stay informed!

Subscribe for the latest from the Netskope Blog